CV3-AD family
AI Domain Controller for ADAS and L2+ to L4 Autonomy

Key Features

Computer Vision AI Engine CVflow®
- Neural network (NN)-based processing to enable detection, classification, tracking, and more
- Neural vector processor (NVP) with industry-leading AI performance per watt
- General vector processor (GVP) for offloading classical computer vision, radar processing, and floating-point intensive algorithms

Advanced Image Processing
- Multi-exposure, line-interleaved high dynamic range (HDR)
- Real time multi-scale / multi-field of view (FoV) generation
- Hardware dewarping engine support
- Multiple camera support
- RGB / RCCB / RCCC / RGB-IR / monochrome sensor

Dense Stereo and Optical Flow Engine
- Generic obstacle detection, terrain modeling, and more

Graphics Processing Unit (GPU)
- Automotive GPU for 3D surround-view rendering

High-Efficiency Video Encoding
- H.265, H.264, MJPEG video encoding
- Flexible multi-streaming capability

Functional Safety
- Processing island targeted to meet ASIL B requirements; safety island targeted to meet ASIL D requirements
- Error correcting code (ECC) protection of DRAM
- Central error handling unit (CEHU)

Target Applications
- Automated driving from L2+ to L4
- Single- / multi-camera advanced driver assistance systems (ADAS)
- Parking assistance systems
- Driver monitoring systems (DMS) and in-cabin solutions
- Single- / multi-channel electronic mirrors with blind spot detection (BSD)

Overview

Ambarella’s ASIL B(D)-compliant CV3-AD domain controller system on chip (SoC) provides industry-leading AI performance per watt for NN computation, with a performance increase of over 40x compared to Ambarella’s prior automotive family of SoCs. In addition, CV3-AD includes a GVP, an advanced image processor, a dense stereo and optical flow engine, up to 16 Arm® Cortex®-A78AE CPUs, and an automotive GPU, in a single SoC. Ambarella’s highly-efficient CVflow®, artificial intelligence (AI) engine enables high performance, low latency, and low-power NN processing for ADAS and L2+ to L4 autonomous vehicles. CVflow’s NVP is enhanced to support the latest advancements in NN inference. The NVP is complemented by the new floating-point GVP, designed to offload classical computer vision and radar processing off the NVP engines and floating-point intensive algorithms from the Arm CPUs.

The image signal processor (ISP) provides outstanding imaging in low-light conditions, while its HDR processing extracts maximum image detail in high-contrast scenes, enhancing the AI and computer vision capabilities of the chip while delivering crisp video for viewing. CV3-AD delivers high-resolution video recording and streaming at very low bit rates with efficient encoding in H.265 and H.264 video formats. It includes a hardware security module (HSM), which provides isolation of different domains, secure software provisioning, a suite of advanced cybersecurity features such as asymmetric / symmetric crypto acceleration, secure storage and key provisioning, encrypted CVflow tasks, true random number generator (TRNG), one-time programmable memory (OTP), DRAM scrambling and DRAM virtualization.

Fabricated in an advanced 5 nm process technology, the CV3-AD is an ideal platform for implementing autonomous driving for vehicles from L2+ to L4, single- and multi-camera ADAS, DMS and in-cabin solutions, single- and multi-channel electronic mirrors with BSD, and intelligent parking assistance systems.
CV3-AD Domain Controller Development Platform

The CV3-AD domain controller development platform contains the necessary tools, software, hardware, and documentation to develop ADAS and L2+ to L4 autonomous vehicles utilizing the powerful CVflow processor, while supporting development of customized features.

Evaluation Kit (EVK)
- CV3-AD main board with connectors for sensor / lens board and peripherals
- Sensor boards
- Datasheet, BOM, schematics, and layout
- SDK and reference application with C source code available with additional licensing

Software Development Kit (SDK)
- SDK, OS, and middleware
- Royalty-free libraries for ISP, dewarp, and video recording
- Image tuning and manufacturing calibration tools
- Detailed documentation with programmer’s guide and more
- Tools to optimize, port, and profile NN / DNN

General Specifications

Computer Vision AI Processor
- CVflow processor optimized for high-performance and power-efficient, neural network compute
- NVP with industry-leading AI performance per watt
- GVP for offloading classical computer vision, radar processing, and floating-point intensive algorithms
- Stereo engine for disparity map generation
- Dense optical flow engine

Processor Cores
- Up to 16 core Arm® Cortex®-A78AE for processing island
- Arm Cortex lockstep cores for safety island
- NEON™ SIMD and FPU acceleration

Graphics Processing Unit
- Automotive GPU for 3D surround view rendering

Camera and Radar Input
- 12x MIPI CSI-2® (4x-lane, MIPI D-PHY)
- Up to 20 cameras using MIPI virtual channels

Video Output
- HDMI® 2.0 including PHY with consumer electronic control (CEC) support
- Two MIPI CSI-2 / MIPI DSI® ports

CMOS Sensor / Image Processing
- Lens shading, fixed-pattern noise correction
- Multi-exposure HDR (line-interleaved sensors)
- 3D motion-compensated temporal filtering (MCTF)
- RGGB / RCCB / RCCC / RGB-IR / monochrome sensor support
- Multi-ROI hardware scaler
- Adjustable auto exposure (AE) / auto white balance (AWB)
- Dynamic range (WDR and HDR) engine
- Chromatic aberration correction
- Geometric distortion correction
- Gamma compensation and color enhancement
- Vignetting compensation
- 3-axis electronic image stabilization (EIS)
- Crop, mirror, flip, 90° / 270° rotation

Video Encoding
- H.264 / H.265 MP / HP L5.0 and MJPEG
- Flexible group of pictures (GOP) configuration with I and P frames
- Multiple CBR and VBR rate control modules

Tools for Development
- Neural network toolkit to ease the porting of NNs trained using frameworks such as Caffe, TVM, PyTorch, TensorFlow, TensorFlowLite, Keras, and ONNX
- Compiler, debugger, and profiler for both Arm and microcode development

Memory Interfaces
- LPDDR5 / LPDDR5x, up to 256-bit data bus for data, up to 128 GB capacity
- Multiple SD controllers
- Boot from PCIe / SPI NAND / SPI NOR / USB / eMMC

Peripheral Interfaces
- Multiple 10 / 100 / 1000 Ethernet with RMII / RGMII
- Multiple 4-lane PCIe interfaces
- USB 3.2 host / device and USB 2.0 device only with PHY
- I²S input and output interfaces, DMIC
- Multiple CAN FD interfaces
- Multiplexed UART and I/F of SSI / IDC
- Multiple GPIO ports, PWM, and IR interfaces
- Watchdog timer, general purpose timers, and JTAG

Physical
- 5 nm low-power complimentary metal-oxide semiconductor (CMOS)
- HFC BGA package
- Operating temperature -40°C to +125°C (TJ)
- Automotive qualified (AEC-Q100 Grade-2, ASIL B/D)

www.ambarella.com/contact-us/

Copyright Ambarella International LP. All rights reserved. Ambarella and the Ambarella logo are trademarks of Ambarella International LP. All other brands, product names, and company names are trademarks of their respective owners. The information in this document is believed to be reliable, but may project preliminary functionality not yet available. Ambarella makes no guarantee or warranty concerning the accuracy and availability of said information and shall not be responsible for any loss or damage whatever nature resulting from the use of, or reliance upon it. Ambarella does not guarantee that the use of any information contained herein will not infringe upon patent, trademark, copyright, or other rights of third parties. Ambarella reserves the right to make changes in the product and its specifications presented in this publication at any time without notice.

July 2023