Overview

Ambarella’s AEC-Q100 qualified CV22AQ SoC combines image processing, 8MP30 video encoding, and CVflow® computer vision processing in a single, low-power design. The CV22AQ’s CVflow architecture provides the deep neural network (DNN) processing required by the next generation of intelligent automotive cameras. Fabricated in advanced 10 nm process technology, it achieves an industry-leading combination of low-power and high-performance in both human vision and computer vision applications. It is an ideal platform for implementing ADAS, electronic mirror, surround view, and drive recorder solutions.

The CV22AQ’s CVflow architecture provides computer vision processing at 8MP resolution, enabling image recognition over long distances and with high accuracy. It includes efficient encoding in both AVC and HEVC video formats, delivering high-resolution video streaming with very low bit rates.

The CV22AQ’s next-generation image signal processor (ISP) provides outstanding imaging in low-light conditions while high dynamic range (HDR) processing extracts maximum image detail in high-contrast scenes, further enhancing the computer vision capabilities of the chip. It includes a suite of advanced security features to prevent hacking, such as secure boot, TrustZone® and I/O virtualization. A complete set of tools is provided to help customers easily port their own neural networks onto the CV22AQ SoC.

Key Features

Computer Vision Engine (CVflow®)
- CNN- / DNN-based processing: detection, classification, tracking, and more
- Computer vision processor
- Tools for high- and low-level algorithm development
- CNN toolkit for easy porting with Caffe, TensorFlow, and ONNX
- Open SDK

Advanced Image Processing
- Multi-exposure line-interleaved HDR
- Hardware dewarping engine support
- Electronic image stabilization (EIS)
- Support for multiple cameras
- LED flicker mitigation
- 3D motion-compensated temporal filtering (MCTF)
- Superior low-light processing
- Support for RGGB, RCCB, RCCC, RGB-IR, and monochrome sensors

High-Efficiency Video Encoding
- H.265 and H.264 video compression
- Flexible multi-streaming capability
- 8MP30 video performance
- Multiple CBR and VBR bit rate control modes
- Smart H.264 and H.265 encoder algorithms

Target Applications
- Multi-channel drive recorder
- AVM / surround view with auto parking assist (APA)
- Single- / multi-channel eMirror
- ADAS
- Driver / cabin monitoring system (DMS / CMS)

Block Diagram

The diagram below illustrates a design based on the Ambarella CV22AQ device.
General Specifications

Processor Cores
- Quad-core Arm® Cortex®-A53 up to 756 MHz
- 32 KB / 32 KB I/D and 1 MB L2 cache
- NEON™ SIMD and FPU acceleration
- OTP, secure boot, TrustZone®, IO virtualization
- AES / 3DES / SHA-1 / MD5 crypto acceleration

Video Input
- Single or dual sensor input with independent ISP configuration
- Sub-LVDS / MIPI CSI-2 / SLVS / HiSPITM
- 16-bit parallel LVCMOS (BT.601 / 656)

Video Output
- 16-bit parallel LVCMOS (BT.601)
- HDMI® 2.0 including PHY with CEC support
- PAL / NTSC composite SD video
- MIPI DSI / CSI-2 and FPD (VESA / JEIDA)

CMOS Sensor Processing / Image Processing
- 8MP30 maximum input resolution
- Lens shading, fixed pattern noise correction
- Multi-exposure HDR (line-interleaved sensors)
- 3D motion compensated temporal filtering (MCTF)
- RGGB / RCCB / RCCC / RGB-IR / monochrome sensor support
- Adjustable AE / AWB
- LED flicker compensation for LED sources
- Dynamic range (WDR and HDR) engine
- Chromatic aberration correction
- 180° fisheye lens and geometric distortion correction
- OSD engine and overlays
- Gamma compensation and color enhancement
- Vignetting compensation
- 3-axis electronic image stabilization (EIS)
- Crop, mirror, flip, 90° / 270° rotation

Video Encoding
- H.265 (HEVC) MP L5.1, H.264 MP / HP L5.1, and MJPEG
- 8MP30 maximum encoding performance
- Up to 8 simultaneous stream encodes
- Flexible GOP configuration with I, P, and B frames
- Multiple CBR and VBR rate control modules

Computer Vision Processor
- CVflow® processor with parallel architecture to boost performance of the low-level portion of perception algorithms

Tools for Development
- CNN toolkit to ease the porting of CNN trained with Caffe, TensorFlow, or ONNX
- Compiler, debugger, and profiler for both Arm and Microcode development

Memory Interfaces
- LPDDR4x / LPDDR4 up to 1.4 GHz clock rate, 32-bit data bus, up to 2-GByte capacity
- Two SD controllers
- Boot from SPI / parallel SLC NAND with BCH / SPI NOR / USB / eMMC
- Single- / dual- / quad-SPI NOR and SPI NAND

Peripheral Interfaces
- One USB 2.0 port configurable as device / host w/PHY
- Audio interface including I²S
- Multiple SSI / SPI, IDC, and UART
- Multiple GPIO ports, PWM, steppers, IR, ADC
- Watchdog timer, multiple general purpose timers, and JTAG

Physical
- 10 nm low-power CMOS
- FBGA package (441 balls, 16x16 mm, 0.65 mm pitch)
- Operating temperature -40°C to +105°C
- Automotive qualified (AEC-Q100 Grade-2)

Computer Vision (CV) Applications
The CV22AQ vision processor enables different automotive CV applications in different markets with its state-of-the-art technology.

Perception Applications
- Driver and in-cabin monitoring system (DMS, CMS)
- Driver drowsiness / distraction
- Driver intent
- Cabin monitoring
- Driver authentication
- Gesture control
- Object detection / classification (CNN-based)
- Pedestrians, vehicles
- Traffic signs, traffic lights
- Headlight detection
- Free space detection
- Lane marking detection
- Parking lines detection

Enabled Computer Vision Applications
- Lane departure warning / lane keeping assistance
- Forward collision warning
- Auto emergency braking (AEB)
- Intelligent headlight control / high beam assist
- Speed assist functions
- Auto parking assist (APA)
- Blind spot detection

Contact www.ambarella.com/about/contact/inquiries.html

Copyright Ambarella, Inc. All rights reserved. Ambarella, and the Ambarella logo are trademarks of Ambarella, Inc. All other brands, product names and company names are trademarks of their respective owners. The information in this document is believed to be reliable, but may project preliminary functionality not yet available. Ambarella, Inc. makes no guarantee or warranty concerning the accuracy and availability of said information and shall not be responsible for any loss or damage whatever nature resulting from the use of, or reliance upon it. Ambarella, Inc. does not guarantee that the use of any information contained herein will not infringe upon patent, trademark, copyright, or other rights of third parties. Ambarella, Inc. reserves the right to make changes in the product and / or its specifications presented in this publication at any time without notice.